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ABSTRACT

The excellence of human singing is an important aspect of
subjective, aesthetic perception of music. In this paper, we
propose a novel approach to tackle Automatic Singing As-
sessment (ASA) task through deep metric learning. With
the goal of retrieving the commonalities of good singing
without explicitly engineering them, we force a triplet
model to map perceptually pleasant-sounding singing per-
formance closer to the reference track compared to oth-
ers, and thus learning a joint embedding space with perfor-
mance characteristics. Incorporating mid-level representa-
tions like spectrogram and chroma, this approach takes ad-
vantage of the feature learning ability of neural networks,
while using the reference track as an important anchor. On
our designed testing set that spans across various styles and
techniques, our model outperforms traditional rule-based
ASA systems.

1. INTRODUCTION

Automatic Singing Assessment (ASA) deals with the task
of assessing singing performances based on audio record-
ings. Ever since the development of Karaoke, a popular
entertainment form and practice means for singers, there
has been a high demand for ASA systems that’s able to
judge the excellence of singing performance just like hu-
man experts do.

However, ASA is not an easy task. Singing quality is
often judged with respect to professional standards, where
music experts rate singing performances based on their
music knowledge and perceptual appeal. These dimen-
sions include basic, objective criteria such as vowel qual-
ity (proper pronouciation of lyrics), accuracy of pitch and
rhythm. Meanwhile, higher-level, subjective dimensions
like singers formant, dynamics and expressiveness, tech-
niques like vibrato and breathing are also taken into ac-
count.

Based on these criteria, some ASA systems compare
a singing performance with a reference such as a profes-
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sional singing performance [1,2] or melody contours [3,4],
and thus place more emphasis on accuracy and intonation.
On the other hand, unreferenced ASA systems aims to
evaluate singing quality based on only the performance it-
self, addressing voice-related characteristics like voice for-
mants or expressiveness. However, all these rule-based
evaluation systems from hand-crafted indicators can eas-
ily be song- and style-dependent, resulting in poor gen-
eralizability. What’s worse is that sometimes human per-
ception standards seem to conflict with each other. For
example, a good vibrato technique implies pitch instabil-
ity, and an ASA system that’s focused on intonation will
fail on certain songs while human can easily perceive the
trick. Given the vast dimensions of our perception space
of singing quality, we seek data-driven, deep learning so-
lutions.

In this work, we aim to tackle the ASA task through
metric learning. With the goal of retrieving the commonal-
ities of good singing without explicitly engineering them,
we force the model to map perceptually pleasant sound-
ing performances closer to the reference track compared
to others, and thus learning a joint embedding space with
performance characteristics. Section 2 reviews the related
works. In Section 3, we first present our audio represen-
tations that incorporate multi-channel features. Then we
introduce our proposed triplet network in comparison to
other skeleton models for assessing singing quality. Ex-
periment results and discussions are shown in Section 4,
where our proposed architecture achieved the highest cor-
relation with human perception of singing rating on the
mixed testing set, when comparing with existing singing
assessment algorithms.

2. RELATED WORK

Currently, the majority of literature on ASA systems,
whether referenced or unreferenced, largely focused on ex-
traction of perceptually motivated features such as f0 pitch
sequences [3], f0 pitch histogram [5], vibrato rate (peri-
odic fluctuation of f0) [6]. The main issue of these hand-
crafted features is that they only reflect specific aspects of
the singing. Thus, some of the systems [1, 7, 8] will then
feed features into simple machine learning regressors or
classifiers which predict ratings that take advantage of mul-
tiple features.

With the rise of deep learning, deep neural network is



found to outperform traditional methods in terms of feature
learning. To our knowledge, the only work that tackles
ASA task though end-to-end deep learning without fea-
ture engineering step is [9], which takes in a mid-level
time-frequency representation of singing clips and evalu-
ate singing as binary (good-poor) classification with a bi-
dense neural network. However, this approach does not
incorporate the song reference melody, and thus only as-
sesses the discernible features which are independent of
the particular singer or melody.

How to make use of the song reference information
while taking advantage of deep learning? We observe that
the technique of deep metric learning has recently attracted
much attention in various MIR tasks. As a method of learn-
ing discriminative features by measuring similarities from
samples, most existing studies used Siamese and Triplet
networks to correlate among samples while using shared
weights [10]. In [11–13], these architectures has been ap-
plied to tasks of Singer Identification, Cover Song Detec-
tion and Singing Style Investigation. What’s more, [14]
assesses woodwind instruments performances via a joint
embedding network, confirming the feasibility of learning
a performance-reference joint latent space. In [15], an at-
tempt with deep metric learning was used for assigning
scores for singing tracks, but the foundation was laid with
a classification network.

Compared to previous works, the novelty of our work is
in two folds: 1) We take a deep metric learning approach
for singing assessment, which utilizes reference tracks
(original, accompaniment) while not being constrained by
it. 2) Besides classical time-frequency representation of
audio, we propose a set of mid-level audio representations
which concerns pitch, tempo, timbre and so on. At the
end, we construct a style-mixture testing set that compre-
hensively evaluates systems’ ability in assessing different
dimensions of singing, and provide a detailed discussion.

3. METHODOLOGY

3.1 Audio Representation

Given that we are not explicitly engineering perceptually
motivated features, it is important to present neural net-
work with a comprehensive view of the audio data. In such
comprehensive task like singing assessment, it is unusual
to judge only the pitch accuracy of a performance and ig-
nore tone production, or only care about hitting the right
beat but not pronunciation of the lyrics. Thus, for input
features, we employ five channels of 2-dimensional audio
representations that concern with musical dimensions such
as pitch, rhythm, timbre:

i Log-Mel Spectrogram (Spec): We extract the Log-
Mel Spectrogram for each 3s segment with a hop
size of 512. Given 16kHz sampled audio, the result-
ing representation contains 94 frames and 96 bins.

ii Chroma (Chroma): Chromagram gives us the pitch
class profiles for the clips. Note that in order to
achieve the same dimension (96) with other chan-
nels, we give 6 bins (96 bins / (12 pitch classes)) for

Figure 1. Top: Spec, Chroma, TChroma, F0, Tempo 2D
visualization of a clip that’s labeled as ’good’; Mid: an-
other clip that’s labeled as ’bad’ at the same timestamp;
Bottom: features from their corresponding accompani-
ment clip.

each pitch class.
iii Tonal Shifted Chroma (TChroma): From a func-

tional harmony perspective, pitch G and C are closer
while C♯ and C differs more. Thus, in this chan-
nel we take inspiration from [16] and rearrange the
rows of chromagram by circle of fifths, in the hope
that the features are more sensitive to non-harmonic
mistakes.

iv F0 (F0): As seen in Section 2, f0 is the most cru-
cial feature for assessing intonation. Pitch extraction
algorithm Crepe [17] is used to obtain an activation
matrix of estimated pitch.

v Tempogram(Tempo): We also extracts the cyclic
tempogram [18] of the clip, representing the esti-
mated tempo that evolves over time.

We adopted Librosa’s [19] implementation for all of the
audio features above except F0. In [20], it was studied that
a short voiced sequence (3-5 sec.) is sufficient for assess-
ing singing quality. Thus, for all of input audio we extract
the features above from 3s clips, with 96×94 in dimension
concatenated together like a 5-channel image. See Figure
1 for comparison of the 5 channel representations of a pair
of 3s clips and their corresponding reference clip.

3.2 Architectures

For the schematic model for embedding, we adopted the
CNNSA (CNN + Self Attention) model proposed in [21,
22]. Originally designed for music-tagging task, the archi-
tecture achieved compelling results in learning local char-
acteristics and temporal representations via interpretable
attention maps.

Structurally, the model employs a front-end / back-end
division of deep neural network for MIR task that was first
proposed by [23] (Figure 2): The front-end consists of a
7-layer CNN with (3× 3) filters with residual connections
[24], aiming to extract local information such as timbre and
pitch. The back-end utilizes stacks of self-attention layers
to achieve temporal summarization like rhythmic patterns,



melodic contours, and chord progressions. Here, the self-
attention layers are BERT [25] encoders where Q,K, V
are feature maps obtained from front-end.

3.2.1 Baseline: Direct Score

Figure 2. Baseline architecture of deriving score from au-
dio representation, without referencing or contrasting.

As shown in Figure 2, our baseline model is a direct
regression model that learns a mapping between audio rep-
resentations and the labeled score directly. No reference is
used. For the architecture, the five-channel audio represen-
tation is fed into the schematic CNN + self attention model
mentioned in 3.2, with 3 fully connected layers at the end
to output a score that measures the excellence of singing.

3.2.2 Delta Spectrogram

The "delta spectrogram" (Delta) model is a natural ex-
tension of the baseline architecture with a reference clip:
Given the audio representation, we subtract it from the au-
dio representation of reference clip. Given most of our au-
dio inputs have time-frequency attributes, a singing clip
misaligned with pitch or rhythm will be reflected in its
delta with reference clip. In comparison with other archi-
tectures, this method is not attempting to learn a joint latent
space, and can be viewed as extracting local similarities at
the front of the pipeline.

Figure 3. The Delta model, where the notion of dis-
tance with anchor is incorporated as delta at the front of
the pipeline.

3.2.3 Triplet:

The triplet model is our main proposed architecture for
learning a joint embedding space with singing characteris-
tics. The objective of this architecture is to learn a mapping
from audio representation to an embedding space where

good singings are closer to reference while poor singings
are further away in this space. We implement this idea via
a triplet network shown in Figure 4, which takes in (ref-
erence (as anchor), good singng (as positive), poor singing
(as negative)).

Figure 4. Metric learning architecture.

All three towers have the same architecture, but the
two towers of positive and negative singing clips enabled
weight-sharing while the reference tower doesn’t. This
is because the performance tracks and reference tracks
came from different audio domains, and thus benefits from
projecting to different embedding spaces. Afterwards, a
128-dimensional embedding for the performance is learnt
through the model, where we optimize toward Triplet Mar-
gin Loss with Cosine Similarity as distance.

The Triplet Margin Loss is computed by

L(a, p, n) = max{D(a, n)−D(a, p) + α, 0}

where a, p, n denotes anchor, positive, negative respec-
tively, and α is the margin. For the distance metric D we
utilize the inverse of Cosine Similarity, as a larger similar-
ity represents smaller distance:

D(x, y) = − x · y
∥x∥ · ∥y∥

Given the 128-dimension output of the model, the final
assessment output is the cosine similarity between the em-
bedding of the given performance and the embedding of its
reference track. Thus, the score assesses the proximity of
the performance towards reference. For the triplet architec-
ture, we utilized both original singing and accompaniment
as reference tracks, and the experiments are denoted by
Rori (reference with original) and Racc (reference with
accompaniment).



3.2.4 Embedding Direct Score

With the belief that the joint latent space encodes the char-
acteristics of commonalities of good and poor singing, we
also trained a embedding direct score (EmbDirect) that
takes the assessment as a downstream task after a singing
embedding is learnt from Section 3.2.3.

Specifically, for a given clip, we take the Rori model
pre-trained in previous section and output the clip embed-
ding of 128 dimension. In this system, we train three
fully connected layers with ReLU activation to regress and
match the labelled score. In inference, the final score is ob-
tained from the audio clip through the embedding and final
output layers directly. Thus, this is also an unreferenced
system.

3.3 Data

The training data are collected from the solo singing clips
without accompaniment from *** 1 . The singers are vol-
unteers who were the common users of this application.

For reference tracks used in metric learning, we perform
experiments with both accompaniment tracks and original
singing tracks, which are the pure singing voice from the
published version of song. The accompaniments are pur-
chased by *** from music production studios, and original
singing tracks are source-separated by Spleeter [26].

After making sure that the reference track and solo
singing track are exactly aligned, WebRTC vad [27] is used
to detect the voiced segments from the singing clip. Each
3s segment from the voiced segment, along with the ref-
erenced track clip on the same position, is extracted into
audio representation in Section 3.1. Our data preprocess-
ing pipeline is shown in Figure 5.

Figure 5. Preprocessing pipeline

Another question is on how we obtain the "good" and
"poor" singing for deep metric learning. For the clips used
in our training, a quality score within [0, 100] was labeled
by the company’s contractor employees. Note that these
quality scores are very rough as they come from multiple
people’s standards without a detailed listening, and there
is no guarantee for their coherency. We take all clips with
scores ≥ 80 as "good" and < 40 as "poor". In the mash-
up, we randomly align a "good" performance and a "bad"
performance of the same song to form a contrasting pair.

We believe the quality score is not exact in modeling the
excellence of singing, but gives a rough direction on what’s
good and what’s poor. Meanwhile, the weak labelling is
actually advantageous to our exploration as they represent

1 https://***app.com/ *** is a Karaoke application.

a general perception and prevents our models to overfit to
any specific assessment standard.

In total, we obtained 15487 3s singing clips pairs, and
an equal number of positive and negative data are exactly
aligned. These clips are obtained from 1240 full length
recordings and from 102 songs. All clips were resampled
to 16K Hz. In terms of genre, the songs roughly consists
of 75% of Chinese pop with a variety of tempo and style
(published after 2000), 15% of folk songs, 5% of rock, and
5% of other genres. There are no jazz or classical singing
styles in the training set.

The testing set we designed will be introduced in Sec-
tion 4.

3.4 Experiments

We trained our models on 3 NVIDIA V100 GPUs on a
single machine. For the CNN models, the optimizer of
the triplet loss is ADAM [28] with a learning rate 10−6.
For EmbDirect system, we used learning rate 10−7 as
it only trains 3 linear layers. We used batch size of 128
and trained our models for a maximum of 200 epochs with
early stopping based on validation loss with patience of 5
epochs. We choose α = 1 for the margin in Triplet loss.

Table 1. Characteristics and style analysis of the songs in
testing set.

4. EVALUATION AND DISCUSSION

Our testing set consists of 5 songs with different styles, that
spans over genres like pop, electronic, country and folk, as
summarized in Table 1 2 . The dataset consists of a mix of
songs that spans over various registers, tempo, techniques
and even language; they also attracts different cultural and
age groups. For each of the 5 songs we subjectively choose
9 different performances with various quality, creating a
testing set of 45 recordings.

2 bpm of the songs are estimated using Madmom [29]



Configuration Reference Used Song1 Song2 Song3 Song4 Song5 Mix

Baseline Direct None 0.785 0.223 0.472 0.528 0.253 0.417

Proposed Delta Original Track 0.718 0.383 0.684 0.288 0.276 0.430
Proposed Rori Original Track 0.912 0.860 0.521 0.839 0.480 0.652
Proposed Racc Accompaniment Track 0.635 0.708 0.853 0.663 -0.222 0.459
Proposed EmbDirect None 0.861 0.503 0.256 0.487 0.753 0.533

Histogram peakBW None 0.875 0.581 0.714 0.872 0.281 0.626
Histogram peakConc50 None 0.651 0.836 0.822 0.736 0.407 0.520
Histogram binning None 0.874 0.776 0.688 0.882 -0.206 0.521
DTWDist pitch MIDI 0.812 0.732 0.907 0.324 0.068 0.589
DTWDist volume Energy Sequence 0.723 0.524 0.761 0.468 0.432 0.467
DTWDist rhythm MIDI 0.361 0.542 0.606 0.042 0.043 0.279

Table 2. Pearson’s correlation between human scoring and algorithm scoring. Correlations among each individual song
and mixture of all songs are shown.

4.1 Subjective Ground Truths

For each of the 45 recordings, we asked 5 professionals
(graduates from music conservatoire with 10+ years of
performance training) to assign them scores based on the
quality of singing. Overall, the scores reached an average
inter-judge correlation of 0.78, and thus we consider them
as valid ground truth. For evaluation of the systems, we
computed the Pearson’s correlation coefficient between the
output scores from the algorithms and the human judge’s
mean score.

4.2 Objective

As mentioned in Section 2, there are plenty of rule-based
methods for singing assessment tasks. We implemented
our version of two existing methods: the pitch histogram
measures proposed in [5] and feature (pitch, dynamics,
rhythm) evaluation method proposed in [3, 30].

4.2.1 Histogram

The pitch histogram method is an unreferenced system that
computes a series of attributes for evaluating unaccompa-
nied singing. With bins of 100 cents within an octave, pitch
histogram represents the distribution of pitch values in a
performance. Good singings will usually have sharp peaks
on specific note values, while poor singings will have dis-
persed distribution as they sing out of tune. Thus, a series
of measurements relating to the spread of peaks in the his-
togram can be used for evaluation. We computed scores
like kurtosis, skewness, peakBW, peakConc50,
peakConc110, kMeans,binning as described in [5],
and listed the best 3 measurements in Table 2.

4.2.2 DTWDist

As specified in [3, 30], we also implemented traditional
Pitch-based Rating, Volume-based Rating,
Rhythm-based Rating. In general, these methods
computes the DTWDist (Dynamic Time Wraping Dis-
tance) between users’ performances with reference (MIDI
note sequence for pitch and rhythm, recording energy se-
quence for volume), and more similar sequences indicates

better singing. We also presents the performance of these
ratings in Table 2.

4.3 Results Discussion

Table 2 shows the comparative performances for all sys-
tems. We are able to make the following observations:

i Performances of deep learning systems. Among
all deep learning systems, our Rori system proved
to correlate the most with human perception of
singing ranking. The models (Direct, Delta)
that don’t incorporate reference tracks were outper-
formed, showing that learning a joint latent space
of singing quality indeed helps with our assessment
goal. Between the deep metric learning systems, we
noticed that Racc doesn’t perform as good as Rori,
since the accompaniment track as anchor does not
provide details on singing, but only helps with judg-
ing the rhythm and tonality.

ii Learnt embeddings are more robust to song vari-
ations. For each individual song, there is at least one
system that reaches 0.75 of correlation with human
perception, but on the mixture of 5 songs the max-
imum correlation we can obtain is 0.65. This con-
firms the concern mentioned in Section 1 , that it’s
difficult for ASA systems to evaluate different songs
on the same scale. The pitch histogram measures,
while performing great among the rating within each
songs, suffers when we cross compare performances
from different songs: The ’spikes’ within the his-
togram are influenced by the number of pitches used,
and some songs are naturally going to achieve a
higher score in their metrics. In comparison, deep
metric learning approaches are more robust. See also
Section 4.4 for more demonstrations.

iii Ability to evaluate on more nuanced techniques.
Song 5 is a Chinese folk style piece that demands
singing techniques such as vibrato. It’s difficult to
hand-craft perception motivated features for such
techniques, and neither of the traditional feature-
based method perform well on this piece. The



Figure 6. PCA Projection of clip embeddings from the
testing set. 5 colors correspond to songs, and transparency
is scaled with the human evaluation score of performance,
where higher scores are darker. Best viewed in color.

deep learning based models Rori, EmbDirect,
however, both outperform traditional methods on
this song while retaining high performance on other
songs. This confirms the ability of deep neural net-
work to model performance-related features.

iv Does good implies similar? The best perform-
ing model for Song 5 is actually EmbDirect
system (Section 3.2.4), that assesses the singing
through features learnt from the good-poor metric
space without computing the similarity with original
singing directly. Thus, we speculate that there is this
conceptual gap between "Good" and "Similar": For
a given piece, there are multiple ways of perform-
ing it nicely, and they don’t necessarily need to be
similar to the original. The EmbDirect system
demonstrates that the learnt joint embeddding space
encodes singing characteristics and can be used to
tell good or poor singing apart - to learn by refer-
ence while not being constrained by it.

4.4 Embedding Space Visualization

In Figure 6, we take all the 3s clips from 45 singing
performances in the testing set, and project their 128-
dimensional embeddings by PCA. The embedding is
trained from our Rori configuration that obtained the best
cross-song result in Table 2, contrasting good-poor perfor-
mance with original singing. 5 songs are distinguished by
colors, while transparency represents the assessment from
ground truth human judgements, where poorer singing has
a higher transparency.

The embedding space visualization supports our obser-
vations in Section 4.3: In the vocal embeddings, song dif-
ferences are largely eliminated, while the clips from higher
scored performances tends to cluster in the middle and
lower scored performances are dispersed. This demon-
strates that, regardless of songs and references, the em-
beddings capture certain universal characteristics in distin-

Figure 7. Comparison between different input audio rep-
resentations.

guishing excellency of singing voice.

4.5 Ablation Study for Input Audio Representation

To demonstrate the effect of our multi-channel audio rep-
resentation described in Section 3.1, ablation experiments
were performed to show that the combination of audio rep-
resentation indeed achieved better assessment results. For
the Rori architecture, we performed experiments using 4
combinations: Spec, Spect+f0, Spec+f0+chroma, and
all 5 representations together.

Figure 7 shows the performance of different audio rep-
resentation input on 5 songs respectively. Overall, the in-
put that utilized all 5 channels achieved the best result.
Given that Convolutional Neural Network is still one of
the most popular architecture for 2D audio feature learn-
ing nowadays, this idea of presenting a multi-channel view
to deep networks may be applied to other interesting tasks.

5. CONCLUSION AND FUTURE WORK

This paper presents a novel approach of automatic singing
assessment task via metric learning. Through training a
triplet model that anchors at a reference track of the per-
formance, we were able to learn a joint embedding space
where characteristics of good and poor singing were ex-
tracted. Comparative experiments were performed on a de-
signed testing set that evaluates assessment systems across
variety of singing styles and techniques. Results demon-
strate that the proposed system outperforms baseline and
feature-based assessment systems in cross-song ratings
when correlates with human judgments.

Given the intrinsic subjective aspect of human percep-
tion of music performance, singing assessment as well
as broader music assessment has been little investigated
through deep learning approach. Our work demonstrates
that it’s possible to direct deep neural network in learning
performance related characteristics via comparing weakly
labeled data. Future explorations may expand on this
"learn by reference" idea with other paradigm such as con-
trastive learning [31], or apply to neighboring domains like
instrumental assessment. Also, we wish our experiments
with multi-channel audio representations would facilitate
more explorations in musically-motivated input design.
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