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ABSTRACT

Computational models of expressive piano performance
rely on attributes like tempo, timing, dynamics and ped-
alling. Despite some promising models for performance
assessment and performance rendering, results are limited
by the scale, breadth and uniformity of existing datasets. In
this paper, we present ATEPP, a dataset that contains 1000
hours of performances of standard piano repertoire by 49
world-renowned pianists, organized and aligned by com-
positions and movements for comparative studies. Scores
in MusicXML format are also available for around half
of the tracks. We first evaluate and verify the use of
transcribed MIDI for representing expressive performance
with a listening evaluation that involves recent transcrip-
tion models. Then, the process of sourcing and curating
the dataset is outlined, including composition entity reso-
lution and a pipeline for audio matching and solo filtering.
Finally, we conduct baseline experiments for performer
identification and performance rendering on our datasets,
demonstrating its potential in generalizing expressive fea-
tures of individual performing style.

1. INTRODUCTION

Expressive piano performance has long been explored us-
ing data-driven approaches for performance analysis and
generation. Recently, more attention has been paid to
data-hungry, deep learning techniques, for expressive per-
formance rendering and assessment [1, 2]. Large-scale
datasets of expressive piano performances that vary across
composition, performers, genres, etc. are demanded by re-
searchers who intend to build comprehensive models and
compare different architectures.

Most of the current work that studies expressive piano
performances [3–5] uses MIDI rather than audio [6, 7], as
MIDI provides easier access to performance attributes in-
cluding tempo, timing, dynamics, and pedalling. However,
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datasets that consist of recorded MIDI files from computer-
controlled pianos are limited in size and variety. Al-
though promising approaches applied such datasets to train
models for rendering human-like piano performances from
scores [3,4], researchers were unable to explore performer-
specific expressiveness or different schools of playing with
deep learning models due to data limitations. Few pay at-
tention to applying deep learning techniques to performer-
related tasks such as performer identification [8, 9], style-
specific performance rendering [4, 10], and performance
style transfer.

Our contribution is three-fold: First, we performed an
error analysis for piano performance transcription, com-
paring state-of-the-art models and verifying the reliabil-
ity of transcribed performances with listening tests in Sec-
tion 3. Second, we focus on Western classical piano mu-
sic and release a dataset with sufficient richness and vari-
ety for studying expressiveness and styles across different
performers. Our released dataset 1 is a performer-oriented
dataset that consists of 11742 virtuoso recordings with
1007 hours of music. Instead of recording MIDI files by
computer-controlled piano, we collected our dataset by ap-
plying state-of-art piano transcription models such as those
by Kong et al. [11] and Hawthorne et al. [12] to transcribe
the existing audio recordings of piano performances into
MIDI files. More details of our dataset and a reproduc-
tion pipeline are presented in Sections 3 and 4. Finally,
we demonstrate the application of our dataset to the tasks
of performer identification and performance rendering in
Section 5. Besides these two tasks, ATEPP can also be
utilized in analyzing performance attributes [13–15], com-
parative study of performances and styles [16], as well as
performance visualization [17].

2. RELATED WORK

2.1 Dataset Requirements for Piano Performance
Research

In order to create a comprehensive dataset addressing tasks
like assessment and rendering, we discuss the following re-

1 Released dataset and supplementary material (Appendix): https:
//github.com/BetsyTang/ATEPP. The dataset is made available
under Creative Commons Attribution 4.0 International Public License
(CC BY 4.0).



Dataset
Size Artist Modality

Performances Hours Compositions Composers Performers Perf. MIDI Score CER

SUPRA [18] 478 52 408 111 153 ✓ × ×
SMD [19] 50 4.7 50 11 unknown ✓ × ×
MazurkaBL [20] 2000 110 44 1 135 × 100% ✓
Maestro v3.0 [21] 1276 172 864 60 205⋆ ✓ × ×
CrestMusePEDB [22] 443 unknown 35 14 12 ✓ ✓ ×
GP† Curated [23] 7236 875 7236 1787 unknown ✓ × ×
ASAP [24] 1068 92 222 15 unknown ✓ 100% ×

ATEPP 11742 1007 1580 25 49 ✓ 43% ✓

Table 1. Overview of major symbolic piano datasets. CER: composition entity resolution. ⋆Number obtained from crawling
the Piano-e-Competition website for performer names and aligning with Maestro data. †GP stands for GiantMIDI-Piano.

quirements, with a comparison of existing datasets in Ta-
ble 1.

• Multiple performances of the same music: With the
goal of capturing expressive details and common per-
formance idioms, comparative study of performance re-
quires multiple versions of the same piece of music, ide-
ally by multiple performers. In the past, datasets with
very limited numbers of pieces were recorded and or-
ganized by researchers, such as the Mozart [25, 26],
Schumann Träumerei [27] and Schubert [8] datasets.
The non-trivial task of Composition Entity Resolution
(CER), involving the process of automatically align the
complex naming schemes of classical music, is the ma-
jor challenge of obtaining multiple performances of the
same music at a larger scale. We will detail our CER pro-
cess in Section 4.1. Among the existing datasets, only
the CHARM Mazurka dataset 2 offers CER.

• Representation: While the audio recording most faith-
fully documents a performance, complex processing
is needed to extract the expressive attributes from the
waveform [28]. MazurkaBL [20] contains many pre-
calculated features that are provided for the Mazurka
dataset. Meanwhile, MIDI can serve as a mid-level,
piano-roll like representation of piano performing ac-
tions. The SUPRA [18] dataset contains expressive
MIDI digitised from pneumatic piano rolls, while SMD
[19], Maestro [21] and CrestMusePEDB [22] all contain
MIDI recorded from Yamaha Disklaviers.

• Repertoire and diversity: Given that piano perfor-
mance traditions are largely associated with the West-
ern classical music paradigm, SMD [19], Maestro [21]
and CrestMusePEDB [22] all include standard repertoire
from Baroque to Late-Romantic era, while GiantMidi-
Piano [23] includes non-standard pieces that span 1.7k
composers. The CHARM Mazurka dataset is a great
example allowing for multiple-performance comparison,
however its repertoire consists only of 49 mazurkas by
Chopin.

• Symbolic score: A high-level representation of the com-
position score is typically needed in tasks such as per-

2 http://www.charm.rhul.ac.uk/index.html, accessed
12 May 2022.

formance rendering [3]. Expressive deviations can be
observed by comparing with the quantized, dead-pan
score. MazurkaBL [20] and ASAP [24] contain sym-
bolic scores in MusicXML format.

• Size: Large datasets are essential for training deep neu-
ral networks. Among existing datasets, only GiantMidi-
Piano [23] has more than 200 hours of piano music.

2.2 Automatic Piano Transcription

Empowered by deep learning models, recent automatic pi-
ano transcription systems can aid expressive performance
research by outputting precise measurements of dynamics,
timing and tempo at the note-level. The Onsets and Frames
transcription model [29] combined framewise pitch detec-
tion with onset detection, to produce a full piano roll with
velocity. The High-Resolution model [11] improved preci-
sion by regressing the exact timestamp of each note. A re-
cently proposed generic encoder-decoder architecture [12]
that exploits language-like modeling achieved model sim-
plicity while retaining performance.

3. TRANSCRIPTION AND POST-PROCESSING
FOR EXPRESSIVE PERFORMANCE

3.1 Common Errors Introduced by Transcription

We categorize common transcription errors into the fol-
lowing three rough categories: harmonic error, segmented
note, and mis-touched short note. These errors are ob-
tained by transcribing the performances from the Mazurka
dataset using the High-Resolution model [11], and then
aligned with its symbolic score in MusicXML using the al-
gorithm by Nakamura et al. [30]. This algorithm aligns two
signals, reference and performance, using hidden Markov
models (HMMs), detects performance errors from the first
alignment result, and then, as a post-processing step, em-
ploys a merged-output HMM [31] to correct the errors.

1. HE: Harmonic errors (fifths and octaves): The most
common type of transcription error is falsely detecting
or failing to detect notes that are harmonically related to
other played or detected notes. Usually these are miss-
ing or extra octaves or fifths, and they result from the
overlap of the harmonic series of the pitches.



Model HE SN MS Other
High-Resolution [11] 3.2% 1.5% 1.2% 5.6%

OnsetsFrames [29] 4.2% 2.4% 0.1% 6.7%
Seq2Seq [12] 8.1% 2.9% 0.3% 7.9%

Table 2. Transcription note error rate (aligned with sym-
bolic score) on the Mazurka dataset.

2. SN: Segmented notes: One continuous note being tran-
scribed into two segments with a small (<10ms) gap be-
tween offset and onset. This error might come from
amplitude modulation [32].

3. MS: Mis-touched short notes: The spurious, short notes
(<16ms) that appear randomly in transcription.

In Table 2, we quantitatively evaluate the presence of
these error types on the Mazurka dataset. Given that no
performance ground truth exists for this data, we rely on
the MusicXML score and the assumption that the per-
formances match the same score version. Among the
three most recent deep-learning based transcription mod-
els [11, 12, 29], High-Resolution model [11] makes the
fewest errors overall, but generates more short notes com-
pared to the other models.

Besides notewise errors, another factor of concern for
transcribed MIDI is the note duration. From the inference
output [11], the notes’ duration are elongated to achieve a
sustain effect that is usually implemented by sustain pedal
in reality. Whilst such elongation doesn’t make an audi-
tory difference in MIDI rendering software, accurate end
positions of each note are required in piano performance
analysis.

3.2 Joint Note-Pedal Training

With the goal of reconciling the sustain effect from both
pedal and keys, as well as achieving more accurate note
offsets, we modify the original High-Resolution model
[11] with joint note-pedal training. As the first piano tran-
scription model that incorporated the sustain pedal into
training, the High-Resolution model trained separate net-
works for key activity and sustain pedal (with binary ve-
locity), while extending the note offset to match the pedal
off timestamp. In joint note-pedal training, 88 keys and
3 pedal channels are combined to output 91 prediction
classes with velocity for each channel, and the extension
of note offsets is removed. In this case, during training the
sustained effect would be conditioned on both key-down
duration as well as pedal controls.

As shown in Figure 1, what we model is the key action
from the pianist instead of the string damping time of the
note (that can either come from the sustain pedal or key
action), which deviates from the traditional transcription
task. With other training parameters unchanged, the onset
F1 score (tol = 50ms) achieved is 92.1% after 300k iter-
ations, and onsets and offsets evaluation achieved 68.2%.
Note that the evaluation results are much lower than the
original results, as we are attempting to learn patterns of
behaviour that are not present in the audio.

Figure 1. Output pianoroll comparison of the original
High-Resolution model (top) and joint note-pedal version
(bottom). Dashed lines represent pedal-on messages with
velocity.

3.3 Score-Alignment and Correction

As described in Section 3.1, a score-performance align-
ment algorithm [30] is employed to automatically find
transcription errors with reference to a score. As a post-
processing step, we correct the differences according to the
alignment. Extra notes (those in transcription but not in
score) are deleted, mismatching notes (aligned with pitch
error) are corrected to the pitch given in the score, and
missing notes (those in score but not in transcription) are
interpolated and written back to MIDI according to the fol-
lowing rule:

g(i) = g(i−∆p) + (g(i+∆n)− g(i−∆p))
∆p

∆p +∆n
,

(1)
where g(i) is the onset or offset timestamp of the missing
note at beat i, and ∆p,∆n represent the beat distances be-
tween the missing note and the previous or next existing
notes, respectively.

3.4 Listening Evaluation

In order to evaluate the perceptual quality of transcribed
piano music, we perform a subjective listening test where
participants rate the similarity of reproduced MIDI and
the reference recording. In the test, we compare the
ground truth with 4 transcribed MIDI renderings: the
original High-Resolution transcription system proposed in
[11](C1), the joint note-pedal model described in Sec-
tion 3.2 (C2), a score-corrected version of C2 as described
in Section 3.3 (C3), and the language-model transcription
system proposed in [12] (C4). All MIDI performances
were rendered using a KAWAI CA49 electric piano and
recorded using Zoom H4n Pro Recorder. The recordings
are then processed with basic noise-reduction in Audacity.

Participants in the listening test are presented with five
20 s classical piano excerpts with varying style (Q1-Liszt,
Q2-Debussy, Q3-Bach, Q4-Rachmaninov, Q5-Mozart; see
appendix for music passages). The test is conducted us-
ing the MUSHRA protocol [33], each with 5 recordings
(reference plus 4 stimuli). Participants are asked which
transcribed stimulus sounded closer to the reference on a
100-point scale. During the test, we explicitly ask partici-
pants to ignore the timbral or acoustic differences but make



Q1 Q2 Q3 Q4 Q5 Overall

Reference 4.42±0.24 4.17±0.29 4.24±0.31 4.28±0.31 4.46±0.27 4.30±0.12

C1 4.12±0.38 3.52±0.37 3.88±0.32 3.60±0.41 3.88±0.4 3.81±0.16
C2 3.83±0.42 3.86±0.39 4.28±0.31 3.97±0.42 4.06±0.45 4.01±0.17
C3 3.44±0.37 2.96±0.36 3.44±0.35 3.32 ±0.42 3.76±0.41 3.38±0.17
C4 3.88±0.34 2.32±0.47 3.60±0.29 3.84±0.33 3.68±0.37 3.46±0.18

Table 3. Results of listening test. The mean opinion scores (MOS) and 95% confidence intervals are reported.

judgements based on the expressive differences between
the stimuli such as dynamics and timing.

We collected 1075 ratings from 43 listeners. Half of
our listeners reported over 5 years of piano performing ex-
perience. Table 3 shows the mean opinion scores (con-
verted to a 5-point scale) from the ratings. According to the
Wilcoxon signed-rank test (p < 0.05), all stimulus groups
differ significantly from the reference. Among the stimuli,
C2 is preferred by the listeners, while C3 and C4 have sig-
nificantly lower ratings compared to the other two groups
of stimuli. In free text responses, the score-corrected tran-
scription received negative comments such as unnatural
and abrupt. Consequently, we use the C2, note-pedal
jointly trained model for transcribing our dataset. The
result also shows a perceptual difference of transcription
quality across music styles, demonstrating the bias of tran-
scription models: transcribed fast, arpeggio-heavy pas-
sages are rated with lower perceptual quality. But for slow,
sparse textures, good transcriptions sound much closer to
the reference.

4. DATASET OVERVIEW

4.1 Data Collection and Curation

Figure 2. Data curation pipeline.

Our data collection pipeline is presented in Figure 2. Start-
ing with 49 world-renowned pianists, metadata (including
composer, performer, album, title and track duration) of
their discography was obtained using the Spotify API 3 .

3 https://developer.spotify.com/documentation/
web-api/

After filtering out non-solo keywords such as concerto or
trio, a composition-movement hierarchy was built.

As discussed in Section 2.1, the next challenging step
was achieving Composition Entity Resolution (CER), de-
fined as finding out which tracks correspond to the same
piece of music, given the variety of naming conventions in
classical music. For example, compositions (1) and (3) in
Figure 2 actually correspond to the same work, while their
title differs so much that a simple string similarity match is
not sufficient to resolve them as identical.

We address CER using three steps: 1) Language-
specific mapping. We manually compile a dictionary for
interchangeable terms, such as Prelude↔ Praeludium. 2)
Unique identifier extraction. Unique information such as
key and catalogue number (Opus, BWV, K., D., etc.) are
extracted from the title string. 3) Fuzzy string matching.
For both composition title and movement title, we use nor-
malized Levenshtein distance [34] to compute similarity
scores. Note that such string matching is not always reli-
able, as generic names like Piano Sonata are extremely fre-
quent in our discography. Combining the three steps, our
composition entity resolution is described in Algorithm 1,
where inputs include composition title C and movement ti-
tle M as well as duration D. Based on the organized meta-
data, we download each track from a corresponding open
source audio at YouTube Music, while the online metadata
is again validated by the same CER algorithm.

Algorithm 1 Composition Entity Resolution
# UniqueInfo extracts canonical key and composer-
specific catalogue number.
for k1, k2 in UniqueInfo(C1, C2) do

if k1 ̸= k2 then return False
end if

end for
Sc ← 1− (Levenshtein(C1, C2))/max(|C1|, |C2|)
Sm ← 1− (Levenshtein(C1, C2))/max(|M1|, |M2|)

Sd ←
abs(D1 −D2)

max(D1, D2)

S ← Sc + Sm

2
− Sd

return S ≥ 0.6

4.2 Audio Matching by Chroma Features

Besides metadata linking using CER, we also match tracks
by downloaded audio content to ensure the same piece of



music is being performed. Within each group of perfor-
mances, we apply Chen et al.’s cover song detection al-
gorithm [35] to compare each performance with a refer-
ence. We first extract the Harmonic Pitch Class Profile
(HPCP) [36] from the reference and the target performance
audio. Next, we use the Qmax measure, which represents
the maximum value of a cumulative matrix computed from
the HPCP descriptors of two performances [37]. The sim-
ilarity between two performances is defined by Eq. 2. We
only retain performances whose similarity is larger than
0.9 to build the ATEPP dataset.

Sim = 1−Qmax , 0 < Qmax < 1 (2)

4.3 Applause Filtering with CNN

We also need to filter out any sound that might not be part
of a solo piano performance. The most prominent ones are
applause and speech from live recordings, which would
be transcribed as random pitch. We train a deep learn-
ing model based on the Musicnn [38] architecture to filter
out any non-solo-piano segment. For each 1 s segment, the
probability of non-piano sound is predicted using a binary
classifier. In training, a subset of AudioSet [39] with var-
ious environmental sounds is used as negative examples,
and solo piano recordings are used as positive examples.
With a binary tag-gram inferred from the audio, our post-
processing step searches for the timestamp of the longest
continuous non-solo segment at the beginning and the end
to remove from the audio file.

Among the 11742 tracks, 567 of them are detected
with starting or ending applause, and were subsequently
cleaned. This was followed by a manual verification pro-
cess by listening to ensure the audio split was accurate.

4.4 MusicXML Score

Given that the musical score is also important for music
research, we collect scores in MusicXML format that cor-
respond to our performance data. 228 files are drawn from
the ASAP dataset [24], and 90 files from the MuseScore 4

online library, crowd-sourced by the users of MuseScore
software. This results in a total of 319 movements, corre-
sponding to 5124 tracks in our dataset (43% of all tracks).
The score-performance correspondence is first determined
automatically by name matching followed by manual cor-
rection.

4.5 Content and Statistics

The ATEPP dataset contains 11742 tracks of 1580 move-
ments. The tracks overlap only 0.2% of the GiantMidi-
Piano dataset [23]. Figure 3 shows a breakdown of the
movement-performance distribution. Among 1580 move-
ments, 44% have more than 5 performances, providing us
with rich data for studying different interpretations of the
same piece of music.

In addition, we show a distribution of the top 25 pi-
anists in our dataset in Figure 4, where Sviatoslav Richter

4 https://musescore.com/sheetmusic

Figure 3. Distribution of movements by number of perfor-
mances. E.g. 12% of our data have more than 15 perfor-
mances.

contributes the most data in ATEPP. Composer-wise, solo
piano works from 25 Western classical composers are in-
cluded in our dataset, ranging from the Baroque to the
Modern era (a full composer breakdown is given in the ap-
pendix).

Figure 4. Distribution of the top 25 pianists’ performances
in the ATEPP dataset.

5. DATASET APPLICATIONS

5.1 Performer Identification

Distinguishing virtuoso performers using computational
models has long been studied by researchers who focus on
expressive parameters of music performances. Data-driven
approaches such as traditional machine learning methods
and feature distribution comparison have been applied to
this task [8, 9, 40]. However, none of the existing studies
have applied deep learning methods to performer identifi-
cation, due to the lack of large-scale datasets with overlap-
ping performances by different performers.

Using the ATEPP dataset, we are now able to train
deep neural networks to identify different performers. We
choose four subsets from the ATEPP dataset, only con-
sidering performers with over 100 performances. For the



Mixture subset, we only consider compositions that have
more than 15 different performances. We also create three
composer-specific subsets (L. Beethoven, F. Chopin, and
J. S. Bach) to remove the bias of performer-composer cor-
relation. The train-validate-test split is 8:1:1.

Subset Pianists Size Acc. F1-score
Mixture 16 4676 0.47 0.45

Beethoven 12 3078 0.48 0.46
Chopin 5 973 0.55 0.54
Bach 5 1019 0.59 0.55

Table 4. Performer identification results.

We extracted note-level features including onset time,
offset time, velocity, and pitch number from the MIDI files
without any expression-related preprocessing. We stacked
the sequences of those features and input them into a 1D
convolution neural network (see Appendix for the network
details). The model was trained on four subsets at a learn-
ing rate of 10−4 with a decay weight of 10−8.

With all subsets achieving over 0.45 F1 score in Table
4, our baseline model demonstrates the capability of learn-
ing individual performing style if given enough data, as
well as generalizing across different compositions.

Moreover, the results from composer-specific datasets
show that we can achieve comparable results even when
performer-style correlation (e.g. Horowitz’s repertoire
concentrates on Romantic styles while Gould almost ex-
clusively plays Bach) was removed. Confusion matrices
are provided in the appendix as well as precision, recall,
and F1-score for each performer.

5.2 Performance Rendering with VirtuosoNet

There has been a growing research interest in quantify-
ing and modelling expressive performance using computa-
tional models [1], including understanding of how humans
perform [41], as well as automatically generating expres-
sive performances [42], and rendering expressive perfor-
mances from a score [3]. Again, ATEPP contributes to
such tasks by providing expressive performance data on a
large scale.

In this study, we show the utility of our dataset using the
performance rendering model VirtuosoNet [3]. The model
consists of an RNN with a hierarchical attention network
to model note, beat and measure level hierarchy of mu-
sic and a conditional variational autoencoder (CVAE) to
model the expressive performance. We selected two pi-
anists’ Beethoven performances with over 300 tracks from
the ATEPP dataset, and altered the model slightly to ren-
der a performance in the style of a particular performer by
concatenating a performer label vector to the latent vector.
During training, we use the same hyper-parameter setting
as the the original paper.

The trained model takes a series of note-level score fea-
tures extracted from MusicXML and a performer name
as input, and predicts the corresponding note-level perfor-
mance features of that performer. Figure 5 shows the real

Figure 5. Measure level dynamic variation of Beethoven’s
Piano sonata No. 3 in C, Op. 2 No. 3, Mvt. II, as performed
and generated in the styles of pianists 1 and 2. The flat line
depicts the default dynamic level provided in the score file.

and predicted (pianist1-generated & pianist2-generated)
performances of an out-of-sample music, Beethoven’s Pi-
ano Sonata No. 3 in C Major, Op. 2 No. 3, Mvt. II, by pi-
anist 1 and 2 in terms of dynamics. The flat line represents
the default dynamic level of a non-expressive, mechanical
rendition of the score.

We can observe that both actual performances and gen-
erated performances (in the style of pianist1 and pianist2)
tend to deviate from the default interpretation in a similar
way, this can be a demonstration of common performance
practice. For individual interpretations, we calculated the
cross-correlation of the dynamic variation between the ac-
tual performance and the generated version using Pear-
son’s correlation coefficient (r). We found that both actual
performances from pianist1 and pianist2 are highly corre-
lated (r > 0.75) with their generated counterparts, respec-
tively. In addition, we computed the correlation coefficient
between the actual performance of pianist1 and the gen-
erated performance of pianist2 and vice-versa. Both of
them provide a lower correlation coefficient (r<0.6). This
demonstrates that deep learning architectures are capable
of learning some of the expressive techniques of each indi-
vidual pianist from respective training data.

6. CONCLUSION AND FUTURE WORK

This paper presents ATEPP, a large-scale dataset of 11,742
expressive piano performances by 49 virtuoso pianists.
Nearly half of the compositions are provided with scores
in MusicXML format. All of the performances were tran-
scribed by piano transcription model which was trained
jointly with pedals and keys. We performed a listening
test to evaluate the reliability of the transcription algorithm.
To our knowledge, our dataset is the largest dataset of ex-
pressive piano performance MIDI with robust metadata of
classical music, derived via Composition Entity Resolu-
tion (CER). We presented our baseline experiments for
performer identification and performer-oriented expressive
performance rendering. The results demonstrate that the
ATEPP dataset enables us to study expressive features of
individual performing styles with deep learning methods.

In the future, we will consider a hierarchical database
system that comprehensively links performances with per-
former, composer, and composition entities through an au-



tomatic CER process. A more balanced dataset is planned
as well as an extended version with more variety across the
skill level of performers.
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